Mortar Spectral Element Discretization of the Laplace and Darcy Equations with Discontinuous Coefficients

نویسندگان

  • Zakaria Belhachmi
  • Christine Bernardi
  • Andreas Karageorghis
چکیده

This paper deals with the mortar spectral element discretization of two equivalent problems, the Laplace equation and the Darcy system, in a domain which corresponds to a nonhomogeneous anisotropic medium. The numerical analysis of the discretization leads to optimal error estimates and the numerical experiments that we present enable us to verify its efficiency. Mathematics Subject Classification. 65N35, 65N55. Received June 9, 2006. Revised April 13, 2007.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mortar Finite Element Discretization of a Model Coupling Darcy and Stokes Equations

As a first draft of a model for a river flowing on a homogeneous porous ground, we consider a system where the Darcy and Stokes equations are coupled via appropriate matching conditions on the interface. We propose a discretization of this problem which combines the mortar method with standard finite elements, in order to handle separately the flow inside and outside the porous medium. We prove...

متن کامل

Mortar spectral element discretization of the Stokes problem in axisymmetric domains

The Stokes problem in a tridimensional axisymmetric domain results into a countable family of two-dimensional problems when using the Fourier coefficients with respect to the angular variable. Relying on this dimension reduction, we propose and study a mortar spectral element discretization of the problem. Numerical experiments confirm the efficiency of this method.

متن کامل

Non-matching Mortar Discretization Analysis for the Coupling Stokes-darcy Equations

Abstract. We consider the coupling across an interface of fluid and porous media flows with Beavers-JosephSaffman transmission conditions. Under an adequate choice of Lagrange multipliers on the interface we analyze inf-sup conditions and optimal a priori error estimates associated with the continuous and discrete formulations of this Stokes-Darcy system. We allow the meshes of the two regions ...

متن کامل

A FETI-DP Method for the Mortar Discretization of Elliptic Problems with Discontinuous Coefficients

Second order elliptic problems with discontinuous coefficients are considered. The problem is discretized by the finite element method on geometrically conforming non-matching triangulations across the interface using the mortar technique. The resulting discrete problem is solved by a FETI-DP method. We prove that the method is convergent and its rate of convergence is almost optimal and indepe...

متن کامل

Parallel scalability of a FETI–DP mortar method for problems with discontinuous coefficients

We consider elliptic problems with discontinuous coefficients discretized by FEM on non-matching triangulations across the interface using the mortar technique. The resulting discrete problem is solved by a FETI–DP method using a preconditioner with special scaling described in Dokeva, Dryja and Proskurowski [to appear]. Experiments performed on hundreds of processors show that this FETI–DP mor...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007